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By means of numerical experiments, the Zabusky-Kruskal discretization of the Kor- 
tewegde Vries equation, is shown to have solitary saw-toothed wave packet solutions. An 
analysis is presented to explain the properties of this type of solution. This, as well as 
numerical experiments indicate that the solution is stable only for small amplitude wave 
packets and that the propagation of the wave packet is essentially linear. Similar experiments 
and analysis for a discretized modified-Kortewegde Vries equation show that large amplitude 
solitary wave packet solutions are possible for this equation and that their propagation is 
governed by an MKdV equation which differs from the one which is consistent with the dis- 
cretized equation. This makes it possible to construct sawtoothed wave packets which behave 
like MKdV-solitons. The results of several numerical experiments showing collisions between 
wave packets and solitons are also reported. ‘b 1987 Academic Press, Inc. 

1. INTRODUCTION 

Parasitic waves or nonphysical waves occurring in the numerical solution of cer- 
tain wave equations can be due to several causes. In some cases such spurious 
waves are caused by the use of high order difference methods, and they can then 
often be filtered out by applying suitable difference operators to the initial data 
(Hedstrom [l], Schoombie [2]). We shall not be concerned with these in this 
paper. 

In other cases, such parasitic waves are observed in the numerical solution when 
discontinuities in the coefficients of the differential equation or in the initial data are 
present. In these cases such waves correspond to high wave numbers and are the 
effect of numerical dispersion, as was pointed out by Trefethen [3-53, and Giles 
and Thompkins [6]. These authors only considered the numerical solution of non- 
dispersive, linear wave equations, so that the only dispersion is that introduced by 
discretization. 

In this paper we wish to report some related phenomena observed in 
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the numerical solution of nonlinear, dispersive wave equations such as the 
Kortewegde Vries (KdV) equation 

u, + qux + puu, + EU,yxx = 0 

and the modified Korteweg-de Vries (MKdV) equation 

u, + qLfr + pu%, + EU,,, = 0. (i2) 

When either (1.1) or (1.2) are solved with a rectangular pulse initial condition, 
solitons will emerge, as well as a dispersive trial moving in the opposite direction 
[7,9]. When using a central difference method such as that of Zabusky and 
Kruskal [S] to solve (1.1) or (1.2) numerically, an additional wave train 
corresponding to high wave numbers is seen to emerge, moving in the same direc- 
tion and ahead of the solitons. This is again at least partly due to numerical disper- 
sion, as will be shown. For certain combinations of the coefficients in (1.1) as well 
as gridlength a solitary wave packet was seen to emerge instead of a parasitic wave 
train. We shall present an analysis which indicates that sawtoothed wave packets 
with a well-defined smooth envelope cannot exist as solutions of the 
Zabusky-Kruskal scheme for (1.1 ), unless their amplitudes are small enough for the 
effect of the nonlinear terms to be negligible. This is confirmed by numerical 
experiments in which such wave packets become unstable whenever their 
amplitudes are made too large. Thus these small wave packets behave very much 
like linear modulations, with envelopes moving along at the linear group velocity 
corresponding to saw-toothed waves. In the case of (1.2), wave packets with 
smooth envelopes and larger amplitudes cannot only exist, but can be shown to 
have envelopes satisfying approximately an MKdV-equation diffeerent from ( 1.2). 
Thus the envelopes can be expected to behave approximately like solitons, and in 
fact we found that typical soliton interactions between such wave packets are 
possible. However, we have not yet been able to observe such a single wave packet 
to emerge from rectangular pulse initial conditions in the case of (1.2). The 
remarkable thing here is, nevertheless, that the difference scheme for (1.2) can have 
soiiton solutions (or at least near-soliton solutions) which differ considerably from 
those of the original differential equation, 

In Section 2 we discuss the effect of numerical dispersion in the case of the 
linearized version of (1.1) and (1.2) (i.e., p = 0). We then report the results of some 
numerical experiments for the nonlinear case, and show that some of the results of 
the linear analysis are still applicable. In Section 3 we use Taylor series expansions 
to examine the properties of the envelopes of solitary saw-toothed wave packets in 
the numerical solutions of (1.1) and (1.2). In Section 4 we discuss the results of 
numerical experiments in which these wave packets are allowed to interact with 
solitons. We also show that in the case of (1.2) a two-soliton interaction is possible 
between two wave packets, depending on the form of the envelopes and the phase 
difference between the wave packets. The paper is concluded with some general 
remarks in Section 5. 
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2. PARASITIC WAVES EMERGING FROM DISCONTINUOUS DATA 

Let us consider the KdV equation in the form 

2.4, + qu, + pllu, + EU,, = 0 (2.1) 

with a periodic initial condition 

21(x, 0) =f(x), (2.2) 

with f bounded and b-periodic and with the periodic conditions on u 

u(x, t) = u(x + b, t) for all t > 0. (2.3) 

We shall also assume the constants y and E to be nonnegative. Contrary to the 
usual practice of transforming the convective term qu, away by means of a Galilean 
transformation, we shall retain it for the purposes of this study. 

For the numerical solution of (2.1) we use the well-known Zabusky-Kruskal 
leapfrog scheme [S], which makes use of central differences in both time and space. 
We shall use the following notation: Let r and h be the timestep and gridlength, 
respectively, and let U; be the numerical approximation to u(hj, zn). Let Ej and E,, 
be the shift operators defined by 

E.U” = u” I I Jfi’ 
E U’?=U?f’ 

n / I . 

We shall then require the following difference operators: 

A,=E,- 1, V,= 1 -E,‘, 

d,=E,-E,‘=A,+V,, and ,ur= (E,+ 1+ E,‘)/3, 

where r = J; n. 

The Zabusky-Kruskal scheme for (1.1) can then be expressed as 

S,,U~+ (y~/h) SjU~+ (pz/3h)(~~U~)(6jU~)+ (EZ/~Z~) GjAjVjUi”=O 

n = 1, 2, 3 ,... . (2.4) 

Because of the leapfrog time differencing, a starter scheme is needed for (2.4). For 
this purpose we shall, in the case where n = 0, replace the term 6, UJ in (2.4) by 
2A,, U;, thus using a forward Euler integration in time initially. ~ 

The scheme (2.4) conserves discrete momentum (i.e., the quantity &hU;) 
exactly, and it conserves discrete energy (i.e., xjh(U;)‘) in the limit z +O) [lo]. 
The linear stability condition for (2.4) is [lo, 1 l] 

(~(q+piul,,,)dh} i-7 (3 .&s~<22h~). (2.5) 

Thus a very small time step is required for stability, which is why other schemes for 
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the KdV are often preferred [12, 131. In this paper, however, we shall be primariiy 
be concerned with certain effects due to the spatial discretization, so that the use oi 
small time steps would actually suit our purpose. 

We shall use the following rectangular pulse initial condition: 

I 
0 when 06x<d, 

f(x)= H when d,<x<d, 
0 when d, < x < 6. 

(2.6) 

2.1. Linear Case 

Before we can consider the nonlinear case p # 0, we first wish to point out the 
effects due to the linear terms in (2.1) and (2.4). Using standard Fourier techniques, 
the solution of (2.1) and (2.2), when p = 0, taking into account (2.3) and (2.0), can 
also be written as 

u(x, t) = (2H/b) f {sin[K,(d, - d,)/2]/K,} exp{i[K,(x --U) - o(K,j r] > 
p= -.x2 

= H(d!-d,)/b+(4H/b) z (sin[K,(d,-d,),12]/K,) cos[K,(x-X)-CD(&) I], 
p=l (2.71 

where 

K, = 27cplb (2.8a) 

X = (d, + dz j/2 {.2.8b) 

w(K,) = ylKP - EK; (2.8~) 

A( K,) = 27t/K, = b/p. (2.&d j 

Here K, is the wave number of the pth Fourier-mode, and (2.8~) is the dispersion 
relation. I(K,) is the wave length of this node. The phase velocity of the node with 
wave number K, is 

c(K,)=~(K,)/K,=~~-EK;. (2.9) 

The group velocity is 

Thus the modes with low wave numbers will have large amplitudes and will move 
in the positive s-direction, with velocity less than q. Modes with higher wave- 
numbers (K, > (q/&j’!2) will have small amplitudes and will move in the negative 
x-direction. If q = 0 aN modes will move in the negative x-direction. 
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It is interesting to compare these results with the solution of the numerical 
scheme (2.4), which contains some numerical dispersion in addition to the disper- 
sion inherent to Eq. (2.1). 

Let N= b/h be the even number of subintervals into which the interval [0, b] is 
divided by the nodes x,= b/2 + hj= (N/2 + j) h, j= -N/2,..., N/2. Let furthermore 
q be the discrete Fourier transform of q, defined by 

N/2 - 1 

0: = (h/b) 1 Cy exp[ -i(2rcp/b)(xj- b/2)] 
j= -N/2 

I%-/2 - 1 

= (l/N) 1 UJ’ exp [ - i(2ltpj/N)] 
j= -N/2 

(2.11) 

with the inverse Fourier transform given by 

N/2 - 1 

Uy = 1 0: exp[i(2npj/N)] 
p= -N/2 

hi2 - 1 

= 1 0; exp[i(2np/b)(.x,- b/2)]. 
p= -Ni2 

(2.12) 

Since the discrete Fourier transform of (Ej)“U; is 0; exp[i(27cpk/N], we can take 
the discrete Fourier transform of the scheme (2.4), thus obtaining an expression for 
0; in the form 

q = A, exp( -inso,( + (- l)“B, exp(inzo,(K,)) 

for n = 2, 3,..., (2.13) 

where 

(h/T) sin(o,*(&,) z) = [tj -2&/h’] sin(K,h) + (c/h’) sin(2K,h) (2.14a) 

and 

K, = 2lrp/b. (2.14b) 

Also, taking the discrete Fourier transform of the scheme (2.4) with the Euler 
starter at n = 0, it is seen that 

ti; = [ 1 -i sin(tw,(K,))] 0;. (2.15) 

Taking, for j = - N/2,..., N/2 - 1, U’$’ = H when l0 <j d j, and zero otherwise, with 
d, = b/2 + hj,, r = 0, 1, it is possible to calculate q from (2.11), and from (2.13) and 
(2.15) A, and B, can then be found. 
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Finally, using (2.12), it is seen that 

y; = (Hjb)(d, -do + 11) + y a(K,)[l -f(K,)] cos[K,(xj- X) - o,(KJ [,!I 
p=l 

N/Z- 1 

+(-1)” 1 4~JfWp) C”SIKp(-U,-x) + OhtKp) t,*lt (2.16a) 

p=l 

where 

and 
f(&J = Cl- sec(~~hWp) ~))/2 (2.27) 

and where it is assumed that j, and j,, are either both even or both odd so that 
sin[(n/h)(x,-.%)] =0 for allj. Now 

f(K,) = - (u,AK,) z)‘i4 + Q(b,(K,) 4”) (2.18) 

and, furthermore, o,(K,) stays finite if r + 0, so that S( K,) = Q(r’) if T --+ 0. Thus 
every mode in the first summation corresponds to a parasitic mode in the second 
summation with the same wave length and frequency, moving in the opposite direc- 
tion, and with amplitude of 0(z2). 

In practice r has to be taken very small in any case, to satisfy the linear stability 
conditions (2.5), so that these O(r’) parasitic waves can be ignored-they do not 
figure significantly in numerical computations. 

Thus assuming that we neglect 0(r2) quantities, (2.16a) reduces to 

u; = (H/b)(d, -do + h) + y a(K,) cos[Kp(x, - 2) - w,JK,) t,]. (2.19:I 
p=1 

This is very similar to the analytic solution (2.7), except that there are now only 
/V/2 + 1 distinct modes, the amplitudes of modes with corresponding wavenumbers 
are different, especially for high wavenumbers, and the dispersion relation is (2.14a I 
instead of (2.8~). 

Since we are neglecting O(r’) quantities, (2.14a) can be rewritten in the form 

lzo,(Kp) = [q - 2~/11’] sin(K,h) c (s/1?) sin(2K,h). !2.20) 

For the mode with wavenumber K, the phase velocity is 

c,(K,) = o,(K,)/K, = [q - 2E/h2][sin(Kph)/(K,lz)] + (2a//z2)[sin(2Kp!z)/(2K,Pz!l 
(2.21) 
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and the group velocity is 

[r/ -2&/h’] cos(K$) + (2&/h2) cos(2K,h). (2.22) 

It can easily be seen that 

wz(K,) = w(K,j + W$h2j 
c,Wp) = 4Kp) + W$h2) 

C,(K,) = C(K,) + O(qh’) 

(2.23) 

and 

4Kp)= (Wb)IIsin{K,(4 -4)/2}/K,1+ O(K,h) if K,,h-+O, 

so that the modes with low wavenumbers correspond well with their counterparts 
in the analytic solution (2.7). The modes with higher wavenumbers show marked 
differences, however. The highest possible wavenumber in (2.19) is KNiz= n/h, 
corresponding to a saw-toothed wave with wavelength 2h. In this case 

c,(n/hj = 0 (2.24a) 

C,(z/h)= -il+4&/h2 (2.24b) 

a(7c/h) = (Hh/b)( - l)i+dO)? (2.24~) 

Trefethen [3] and Giles and Thompkins [6] showed that discontinuities in the dif- 
ferential equation or data generally causes a modulated wavetrain of high wave 
number to emerge in the numerical solution, with the wave front moving along at 
the group velocity Ch. It is expected that this could happen in the present case as 
well. For simplicity, take ye = 0. Then it is seen from (2.24) that the wavefront of 
such a saw-toothed parasitic wave will move in the positive x-direction at a group 
velocity of 4&/h*. (Note that, from (2.10), all modes will move in the negative 
s-direction if II= 0.) Figure 1 shows some of the results when the numerical scheme 
(2.4) is applied in the case q = p = 0. The parameters used are as follows: 

H= 1.0 d,, = 1.5 d, = 2.5 b = 6.0 & = 0.0005 N= 150 z = 0.001 

A graph of the solution was drawn every 300 time steps to the 1200th time step. 
Each graph is shown for the intervals x E [0.,6.] and UE [ -0.3, 1.31. Besides a 
dispersive wave moving towards the left, a modulated saw-toothed wavetrain is 
clearly seen to emerge towards the right. 

2.2. Nonlinear Case 

Having a clear idea of the effect of dispersion in both (2.1) and (2.4), we now 
proceed to the nonlinear case where p # 0. Analysis of the analytical solution now 
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FIG. 1. Numerical solution of KdV-equation, scheme (2.4) with rl=O, p =O, ~=0.0005. A’= 150, 
h = 0.4, and t = 0.001. Initial condition: (2.6) with H = 1.0, C& = i.5, d, = 7.5. and 6 = 6.0. 

requires techniques such as the inverse scattering transform [7,9]. Using this 
technique, it is possible to show that a number of solitons will emerge from a rec- 
tangular pulse initial condition, moving towards the right, In addition, a dispersive 
trail will emerge travelling to the left [7,9]. No convincing attempt has so far been 
made to analyze the numerical solution of (2.1). We shall thus only report the 
results of some numerical experiments, and show in Section 3, how some special 
types of solutions may be treated analytically. 

When using the same parameters as those used to generate Fig. 1, but with p = 1, 
a very interesting phenomenon is observed. Figure 2 shows the results. A graph was 
drawn every 400 time steps from the 0th to the 1600th time step. Each graph is 
shown on the intervals x E [O.O, 6.01 and U E [ -0.3, 1.61. Solitons are appearing, 
as expected, but instead of a modulated saw-toothed parasitic wave emerging, 
moving towards the right, a single, localized wavepacket is observed, moving 
towards the right. This wavepacket moves at a speed very near to the group 
velocity of 48/h’ of the saw-toothed parasitic wave in the linear case. 

A number of experiments were done to investigate the effect of the height of the 
initial pulse (H in (2.6)) on the amplitude of the emanating wavepacket. Choosing 
the same parameters as those used for Fig. 2, and varying H, the maximum 
amplitude of the wavepacket was measured in each case. The results are recorded in 
Table 1 and shown graphically in Fig. 3. 

For small H the amplitude of the wavepacket increases more or less linearly with 
H, but for larger values of H the graph deviates sharply from a straight line. ‘This is 
not unexpected. From (2.19) it is seen that the amplitude caf the emerging wavetrain 
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FIG. 2. Numerical solutions of KdV-equation, scheme (2.4) with 9 = 0, p = 1.0, E = 0.0005, N= 150. 
k=0.04, and t=O.OOl. Initial condition: (2.6) with H= 1.0, d,= 1.5, d, =2.5, and b=6.0. 

should increase linearly with H, and for small values of H the solution of the non- 
linear equation should behave almost linearly. It is interesting that the amplitude of 
the wavepacket reaches a maximum value, with respect to H, and then decreases 
again. 

Although the height H of the initial pulse has a marked effect on the amplitude of 
the wavepacket, further numerical experiments indicated that the width d, -L&, of 
the initial pulse has no effect on this amplitude. In fact it seems that it is the 
presence of a discontinuity in the initial data which causes the wavepacket to 
appear and not the rectangular pulse as such. In an experiment where a discon- 
tinuous piecewise linear initial function was used instead of a piecewise constant 
one, the emergence of the same type of wavepacket was observed. In an experiment 
where the initial pulse was allowed to have steep-sloped sides, instead of being 
exactly rectangular, the amplitude of the emerging wavepacket was much smaller. 

The amount of dispersion present in the numerical scheme also seems to be 
important. This can be controlled by varying E, and it was found that for any value 
of h there is a certain a-interval within which the wavepacket phenomenon is 
obtained. For values of E which are too small, the wavepacket almost vanishes, and 
for values of E which are too large, the wavepacket degenerates into a modulated 
wavetrain as in the linear case. For larger values of h this a-interval shifts towards 
larger values of E as well. 

The specific type of nonlinearity in (2.1) also seems to be important. In addition 
to (2.1) we also considered the modified Korteweg-de Vries (MKdV) equation 

u, + Yp, + pu’u, + EU,, = 0 (2.25) 
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HEIGHT OF RECTRNGULAR PULSE 

FIG. 3. The amplitude of the emerging saw-toothed wavepacket is shown against the height, iI. 3f 
the rectangular pulse initial condition, for the KdV-equation, scheme (2.4). The following parametc-rs 
were used: q=O. p=l.O, ~=0.0005, N=!50, h-0.04, and r=O.OOl. 

which we solved by the numerical scheme 

In this case, however, we were unable to observe a single wavepacket emerging 
from a rectangular pulse initial condition, no matter what values of E and h we 
used. In all cases a modulate saw-toothed wavetrain, very similar to that observed 
in the linear case, preceded the solitons. 

We cannot yet give a satisfactory explanation for this type of nonlinear 
modulation, but in the next section we shall point out some properties of this type 
of wavepacket, which we hope may be a beginning towards a more thorough 
analysis. 

TABLE I 

H Amplitude of wavepacket 

0.2 0.019 
0.4 0.034 
0.6 0.089 
0.8 0,146 
1.0 0.144 
I.2 0.112 
1.4 0.011 
1.6 0.048 
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3. THE PROPAGATION OF THE ENVELOPE OF A SAW-TOOTHED WAVE PACKET 

Due to the nonlinear term in the KdV-equation, a Fourier analysis can no longer 
be applied to explain the appearance and propagation of saw-toothed solutions of 
the nonlinear numerical scheme. In the previous section it was shown by means of 
numerical experiments that such saw-toothed waves do exist in the nonlinear case 
and that they differ from their counterparts in the linear case, in the respect that 
they can emerge from discontinuous data as single wavepackets. 

A different approach towards analyzing them is possible if we only concentrate 
on parasitic waves of wavelength 211 and consider the propagation of the emelope of 
such waves. 

Our numerical experiments showed that the maximum amplitudes of the saw- 
toothed wave packets emerging from rectangular pulse initial data are relatively 
small. FromTable I and Fig. 3 it is seen that it is, for the parameters chosen, never 
larger than about 18% of the height of the initial pulse. In the next section we will 
report an experiment in which we used a saw-toothed wavepacket with a smooth 
envelope as an initial condition. Such a wavepacket became unstable when its 
amplitude was chosen to be too large, and it would propagate without too much 
distortion when it had a relatively small amplitude (not more than about 0.3 for the 
parameters used). We shall show below that our nonlinear analysis also breaks 
down when considering large amplitude wavepackets as solutions of (2.4). 

In order to investigate the envelope of a modulated parasitic wave of wavelength 
2h, we consider a wave of the form 

u; = ( - 1 p-y, (3.1) 

where for each value of n, V; is zero for all but a certain finite range of adjacent 
values of j. When we substitute (3.1) into the scheme (2.4), we find that VJ’ is a 
solution of 

+ (.sr/h3) SjdjVj P-7 = 0. (3.2) 

Note that (3.2) is a nonlinear difference equation which describes the propagation of 
the envelope of a saw-toothed wave of wavelength 2h. This equation is clearly not a 
discrete analog of any partial differential equation, because of the presence of the 
factor (- 1 y‘ in the coefficient of the nonlinear term. For V; sufficiently small, 
however, the nonlinear term may be neglected and VJ’ considered to be an 
approximate solution of the difference equation 

6, V-7 + (t(4.z - h’q/h3} Sj V; + (n/h3) i$AjVj VJ’ = 0. (3.3) 

We are, therefore, again considering the linear case of Section 2.1, but from a 
different viewpoint. 
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Assuming the existence of a smooth interpolate v(x, tj of the discrete function Yy7 
such that u(jh, nz) = P’;, and performing a Taylor expansion about (x, t) = (Jr, 45 1, 
we find that v(x, t) is a solution of the partial differential equation 

u, + (ux + ~v,,.x = O(h’j + Q(r2 j, (3.4) 

where 

(3.5) 

Thus (3.3) is seen to be consistent with the equation 

v, + fjVl + E^v,,, = 0, (3.6) 

with a truncation error of the same order as that of scheme (2.4). Note also that, in 
the small amplitude limit we are now considering, the modulated saw-toothed wave 
(3.1) is an approximate solution of the linearized KdV-equation 

whereas its envelope is described by r(s, t) which approximately satisfies anorhej. 
linearized KdV-equation, namely (3.6). This was not clear from the Fourier analysis 
in Section 2.1. 

For small h, +j is large (Q = 0(/r-‘) j with respect to E^, and the dispersion term 
E^L’X.YX will be dominated by the convection term @lx in (3.6). In the experiments 
reported in Section 2, E (and consequently also E^) was usually taken to be very 
small (E = O(h2) j7 and thus Eq. (3.4) effectively becomes 

with 

v, + ljZll = Ojh’) + O(r’) (3.8j 

(=0(l). 

Equation (3.8) represents a wavepacket with an envelope being propagated at the 
speed 4, which is, according to (3.5) and (2.24b), equal to the linear group velocity 
of a saw-toothed wave solution of the numerical scheme. This is well in agreement 
with the observed behavior of the saw-toothed wave packets emerging from 
rectangular pulse initial conditions. 

The fact that a smooth interpolate of I’;, approximately satisfying some partial 
differential equation, cannot be found when the nonlinear term is retained in (32’r, 
together with our numerical experiments indicating the instability of large 
amplitude saw-toothed wave packets, lead us to suspect that all such wavepackets 
occurring in the solution of (2.4) must be of small amplitude and, therefore, essen- 
tially linear in character. 
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It will be recalled that it was the presence of the factor (- 1)’ in (3.2) which made 
it impossible to obtain a continuized version of this discrete equation if the non- 
linear term was retained. This factor appears because the nonlinearity is quadratic. 
If the nonlinearity were cubic, as in the case of the MKdV-equation (1.2), a similar 
analysis would yield a difference equation which can be continuized. Thus with a 
cubic nonlinearity this type of analysis could be carried much further and could be 
applied to wave packets with much larger amplitudes. 

In Section 4 we will report numerical experiments in which we used single saw- 
toothed wave packets as initial conditions with the scheme (2.26) for the MKdV- 
equation. We did in fact find that, unlike the case of the KdV, the amplitudes of 
such wave packets could be made relatively large. 

To apply the analysis of this section to the scheme (2.26) for the MKdV- 
equation, we substitute (3.1) into (2.26) to obtain 

6, VT + (+2)(4&/h2 - q) bj rfy + (pr/3h) vJypj- 2) v; aj v; 

+ (ET/h3) 6,A,Vj qj = 0. (3.9) 

Assuming the existence of an interpolate v(x, t) such that u(jh, nz) = V; and perfor- 
ming a Taylor analysis about (x, t) = (jh, nr) we find that U(X, t) is a solution of 

v, + iv, + TV%, + E^D, = O(h2) + 0(72), (3.10) 

where 

G=4E/h2-yl 

P=p/3 

2 = 5~13 - qh*/6. 

(3.11) 

In this case (3.1) is an approximate saw-toothed wave solution of the MKdV- 
equation 

14, + qu, + pu*u, + EU,, = 0 (3.12) 

while its envelope is described by a function v(x, tj which approximately satisfies 
another MKdV-equation, namely (3.10). Thus a saw-toothed wavepacket having an 
envelope with properties approaching that of a MKdV-soliton, is therefore a dis- 
tinct possibility. The single soliton solution of the MKdV-equation (3.10) is of the 
form 

v(x, t) = (6i/lp)“* /?[sech B(x - fjt - @?‘t - x,)], (3.13) 

where /? is a real parameter [13]. 
Thus if we put 

L$‘= (6.@/b)“‘p sech[B(hj-x,)] 



PARASITIC WAVES AND SOLITONS -i-7 id. 

in (3.1): we would expect to observe a wavepacket which does not change its shape 
appreciably, and maintain a velocity of q + E^f12. If we choose Vy consistent with an 
N-soliton solution of the MKdV-equation (3.10), it should be possible to observe 
interactions of wavepacket “solitons.” The results of such numerical experiments are 
reported in the next section. 

A question which also arises is: What will happen when a true soliton of the 
MKdV-equation and a wave packet “soliton” of the same equation interacts? The 
same might be asked with respect to a true soliton of the KdV-equation and a KdY 
wave packet (which is quite different from a soliton). In the next section we shall 
report some numerical experiments which shows markedly different results for these 
two cases. 

4. NUMERICAL EXPERIMENTS 

It was shown in the previous section that a saw-toothed wavepacket soliton 
solution is not possible for the KdV-equation, but that such wave packets travel 
with velocity very nearly equal to 4.s/h’- g and show some dispersion. When 17 is 
small, however (with v] = 0), the velocity is large in comparison with the rate at 
which dispersion is introduced and the wavepacket is propagated initially with little 
change in the shape of the envelope. 

Figure 4 shows the solution of the Zabusky-Kruskal scheme, (2.4), with 

y=o p=l & = 0.0005 

N= 150 11= 0.04 T = 0.002 b = 6. 

FIG. 4. Numerical solution of KdV-equation, scheme (2.4) with 9 = 0, p = 1.0, c = 0.0005, IL’= 156. 
h =0.04, and ~=0.002. Initial condition: (4.1) with 6=0.33333333, d=O.O!lO8333333, fi= 3.0, and 
X” = 1.2. 
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A graph of the solution was drawn every 300 time steps from the 0th to the 1200th 
time step. Each graph is shown for the intervals x E [O.O, 6.01 and UE [ -0.3, 0.31. 
The initial condition used was 

Uj’=(-l)~~sech’(/3(h/-.~,)) for Jo N n [l, 1501 (4.1) 

with 

iAE @2- l -- 
3 6 1200 

/3 = 3.0, x0 = 1.2 

According to (3.11) the group velocity of such a wavepacket is 

4E 
vj=j-yj= 1.25. 

The center of the wavepacket initially was at 1.2 and, after a time of 2.4 units, it was 
approximately at 4.18, thus giving an experimental velocity of 1.24. 

It was also shown in the previous section that a wavepacket soliton solution is 

FIG. 5. Numerical solution of MKdV-equation, scheme (2.26) with q = 12.5, p = 1.0, E =O.OOS, 
N= 150, /I =0.04, and 7 =0.002. Initial condition: (4.2) with p =0.33333333, E^=O.O05, ,!?= 10.0, and 
x0 = 1.2. 
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possible for the MKdV-equation. Figure 5 shows the solution of the scheme (2.26). 
with 

q = 12.5 p=l & = 000.5 

N= 150 h = 0.04 t =0.002 b = 6. 

A graph of the solution was drawn every 1000 time steps, from the 0th to the 
4000th time step. Each graph is shown for the intervals x E [O.O, 6.0 
UE [ - 3.5, 3.51. The initial condition used was 

UP = ( - 1)’ d’@$ p sech(b(hj- .x0)) for J'EN n[1,150] (4.2) 

with 

1 P 1 
p=5=? 

5~ qh2 
E^=j-y=o.oo5 

q was chosen such that 9 = 0, thus the velocity of the wavepacket soliton is solely 
due to its solitonic nature with no translational velocity added. 

The results of the experiment show that the wavepacket soliton travelled very 
stably with constant velocity and with no appreciable change of shape for 4000 time 
steps. This confirms the validity of the envelope approach of Section 3, for the 
MKdV-equation. 

According to (3.14) the velocity of the wavepacket soliton, should be 

fj + ip2 =0.5. 

In this experiment the center of the wavepacket soliton has moved from 1.2 to 
approximately 5.04 in 8 time units, giving an experimental velocity of 0.48. 

It was also found that the solution of the scheme (2.26) with true soliton initial 
conditions often became unstable and decayed into a highly oscillatory so1utio.n 
leading to a nonlinear blowup shortly afterwards. This occurred more frequently 
when the b-parameter was large. The wavepacket soliton seemed to be a much 
more stable solution of (2.26), than true solitons. 

Figure 6 shows the results of an experiment where a KdV-wavepacket and a 
KdV-soliton were allowed to collide. The scheme (2.4) was solved with 

q = 0.0 p= 1.0 & = 0.0005 

N= 1.50 h = 0.04 r = 0.002 b = 6.0. 
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t=400r z 

t=l?oor 

t=1400r 

.L=16O@r 

FIG. 6. Numerical solution of KdV-equation, scheme (2.4) with P/ = 0.0, p = 1.0, E = 0.0005, N = 150, 
h = 0.04, and T = 0.002. Initial condition: (4.3) with p = 0.33333333, E’= 0.000833333, /I0 = 3.0, x0 = 1.00, 
p, = 11.0, and x, = 2.36. 

A graph of the solution was drawn every 200 time steps from the 0th to the 1600th 
time step. Each graph is shown for the intervals x E [O.O, 6.01 and U E [ -0.3, 0.81. 
The initial condition used was simply a linear superposition of the wavepacket and 
the soliton placed far enough apart, 

12&p; q!=(-l)i- 12&P I 
b 

sech’ (/?,,(I+x0))+- 
P 

sech2(fi,(hj-x,)) for Jo N n [l, 1501 

(4.3) 
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with p and E as given above, and 

n 5~ qh2 1 
E=T--=E 

po= 3.0, xg = 1.0 

Bt = 11.0, x1 = 2.34. 

The results are interesting and surprising, but still lack an explanation. After the 
collision the soliton emerged with larger amplitude, and the wavepacket emerged 
with smaller amplitude, still travelling to the right at approximately the predicted 
velocity of 1.25. In addition, a third localized solution appeared: a wavepacket with 
smaller wave number than the incident saw-toothed wavepacket, and travelling to 
the left with constant velocity. 

A number of such collision experiments were done. In general, it was found that 
the soliton always emerged with an increased amplitude (in the order of 10 %I ). It 
also appeared that solitons with large amplitude, with respect to the amplitude of 
the incident wavepacket, had a more destructive effect on the wavepacket: The 
larger the amplitude of the soliton, the smaller the amplitude of the transmitted 
wavepacket and the larger the amplitude of the reflected wavepacket. 

Similar collision experiments were done for the MKdV-scheme (2.26). Figure 7 
shows the solution of (2.26) with 

II= 0.0 

N= 150 

p= 1.0 e = 0.002 

h =0.04 5 =0.002 b = 6.0. 

A graph of the solution was drawn every 50 time steps from the 0th to the 400th 
time step. Each graph is shown for the intervals .‘c E [O.O, 6.01 and U E [ - 1.2: 1.21. 
The initial condition used was 

with p and E as given above and 

5E I$~’ 1 E^=---=- 
3 6 300 

p()=4.0 .‘cfJ = 1.0 

p,=9.0 XI = 2.68. 
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I 

t=1001 

t=1507 

/ 

t=250r 

FIG. 7. Numerical solution of MKdV-equation, scheme (2.26) with q =O.O, p = 1.0, E =0.002, 
N = 150, h = 0.04, and T = 0.002. Initial condition: (4.4) with p = 0.33333333, E^ = 0.003333333, Do = 4.0, 
x,, = 1.00, b1 = 9.0, and x, = 2.68. 

The results show that in the case of the scheme(2.26) for the MKdV-equation, a 
collision between the wavepacket soliton and the true soliton produced no side 
effects: The two types of solitons passed through each other as in the case of a 
linear equation. Even the usual phase shift resulting from an interaction between 
two true solitons of the MKdV-equation is unobservable in this case. 

In the following two expriments two saw-toothed wavepacket solitons of the 
MKdV-equation were allowed to collide. Figure 8 shows the solution of the scheme 
(2.26), where both the saw-toothed solitons has the upper parts of their envelopes 
supported by the even nodes and the lower parts by the odd nodes. Figure 9 shows 
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the results of a similar experiment, where the first saw-toothed soliton has its upper 
envelope supported by the even nodes and the second has its upper envelope 
supported by the odd nodes. The following parameters were used: 

II = 12.5 p= 1.0 E = 0.005 

N= 150 h =0.04 T = 0.002 b = 6.0. 

The initial condition used in these experiments was 

q= (- l,iJ~ [PO sech(/?,(hj-x,))+fl, sech(fl,(hj-x,))] for Jo N r. [I, ‘1507 
(4.5) 

FIG. 8. Numerical solution of MKdV-equation, scheme (2.26) with q = 12.5, p = 1.0, E -0.005. 
N= 150. h =0.04, and ~=0.002. Initial condition: (4.5) with f sign and with ,5 =0.33333333, E^ =O.OOS., 
PO = 12.0, x0 = 0.8. /I> = 6.0, and x, = 2.0. 
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1 P 1 
p=5=3 

&u!c()()*5 
3 6-’ 

& = 12.0 PI = 6.0. 

In Fig. 8, x0 and x1 were chosen as 

xg = 0.8 x1 = 2.0 

t-2 

t=mr 

t=4oar 

t=1mor 

t-120D. 

1 

t=lmGT 

t=lEoOT 

FIG. 9. Numerical solution of MKdV-equation, scheme (2.263 with q = 12.5, p = 1.0, E = 0.005, 
N = 150, h = 004, and 5 = 0.002. Initial condition: (4.5) with - sign and with p = 0.33333333, Z = 0.005, 
PO= 12.0, x,=0.8, /I, =6.0, and x1 =2.6. 
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and the + sign was taken in (4.5). A graph of the solution was drawn every 300 
time steps from the 0th to the 2400th time step. Each graph is shown for the inter- 
vals .YE [O.O, 6.01 and UE [-3.8, 3.81. 

In Fig. 9, .yO and x! were chosen as 

x0 = 0.8 XI = 2.6 

and the - sign was taken in (4.5). A graph of the solution was drawn every 2015 
time steps from the 0th to the 1600th time step. Each graph is shown for the inter- 
vals IE [O.O, 6.01 and UE [ -3.8, 3.81. 

Figure 8 shows a typical two-soliton interaction with the usual phase shift. In 
Fig. 9, the development of a nonlinear instability is witnessed. The solution blows 
up between the 1600th and 1800th time steps. Such a nonlinear instability is not 
totally unexpected, since energy is not conserved by the scheme (2.26). 

It is evident, however, from there experiments that interacting saw-toothed 
solitons are possible for the discrete version of the MKdV, provided that the 
interacting solitons all have upper envelopes with support on either the even or the 
odd nodes. This means that the saw-toothed carrier waves of the two wavepacket 
solitons should have the same phase. 

5. CONCLUSIONS 

In the preceding sections we have shown that, with rectangular pulse initial data. 
discretized versions of both the KdV- and MKdV-equations have high wave num- 
ber components in their solutions which are not present in the analytical solutions 
of these equations. 

In the case of the KdV-equation, this can take the form of a small solitary saw- 
toothed wave packet, moving at a velocity very nearly equal to the linear group 
velocity, with little dispersion. Because of their relatively small amplitudes, the 
propagation of these wave packets is essentially governed by a linearized KdV- 
equation. Attempts to find stable wave packet solutions, with envelopes large 
enough for nonlinear effects to come into play, failed. 

In the case of the MKdV-equation the parasitic high wave number components 
emerging from an initial rectangular pulse took the form of a modulated wave train, 
as in the case of a linearized KdV-equation. The numerical scheme for this 
equation, however, does admit saw-toothed wavepacket solutions, with no 
apparent restriction on its amplitude. The envelope of such a wavepacket 
approximately satisfies another MKdV-equation, and wavepackets behaving like 
solitons can be constructed. 

It is remarkable that, in spite of the fact that saw-toothed MKdV-“‘solitons” are 
much more stable during interactions than the wavepackets of the KdV-equation, it 
is in the latter case that solitary wavepackets are seen to emerge from a rectangular 
pulse initial condition. In order to understand this phenomenon, as well a.s the 
mechanism of nonlinear modulation, a further investigation is necessary. 
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It should also be interesting to investigate discrete versions of other dispersive 
nonlinear wave equations, in order to see whether similar phenomena can be obser- 
ved in such cases. 
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